Thalassaemia and it's Current Status Globally and in Sri Lanka

Prof Sanath P Lamabadusuriya

What is Thalassaemia?

- It is the commonest inherited variety of anaemia
- It is the commonest haemoglobinopathy in Sri Lanka
- Of all the different types, Beta-Thalassaemia major is the commonest type

Global Picture

- Haemoglobin disorders are the commonest clinically serious single gene disorders in the world
- 300,000 sickle cell disease babies are born each year
- 1.5 % of world population are carriers of β Thalassaemia ie. 80-90 million
- 60,000-70,000 –β Thalassaemia major babies are born each year

Sri Lanka

- Population- 19 million
- Birth rate 18/1000
- Annual birth cohort: 344,600
- β Thalassaemia carriers 2.2%
- Expected homozygous births/ year 62
- Known homozygotes (patients) 2000

Prevalence of Anaemia in Sri Lankan Children

6 months to 1 year: <10.5g/dl: 56%

1 year to 5 years: <11 g/dl: 29.9%

Vast majority is due to Iron deficiency

Clinical Presentation of

Thalassaemia

- Anaemia and its manifestations in infancy
- Abdominal distension due to hepatosplenomegaly
- Growth failure

Principles of Management

- Correction of anaemia and maintenance of Hb over 10-12 g/dl
- Chelation of Iron
- Splenectomy-sometimes
- Hormone replacement therapy
- Management of complications

Other Aspects of Management

- Hormone replacement- eg. Oestrogens and Androgens
- Control of diabetes mellitus
- Other hormone replacements
- Folate supplements
- Splenectomy
- Special vaccines- eg. Hib vaccine, Pneumococcal vaccine

Advances in Thalassaemia Management

Iron-chelation therapy

- No alternatives presently licensed for general use
- Heightened interest in new agents
- Augmentation of fetal hemoglobin
 - Generally less successful than in sickle cell disease
 - No agents yet in routine clinical use
- Stem cell transplantation
- Understanding of thalassemia intermedia, HbE thalassemia

Strategies for Chelation Therapy

Prevention

- Prevent tissue damage by early appropriate Rx
- Maintain hepatic iron <7 mg/gram dw
- Probably enough to prevent cardiac death (? Other toxicities)
- "Rescue"
 - Remove toxic iron: best accomplished with continuous treatment (IV or SC DFO)
 - Remove storage iron

Key to Obtaining Good

Outcome

- Expert 'center'
- Expert team
 - Paediatrician/Physician with interest
 - Nurse specialist
 - Clinical psychologist
 - Integrated care with other consultative services
- Continuity of care from childhood to adulthood
- Expectant care

Iron Loading in Transfused Patients

- One unit (420 ml donor blood) = ~200 mg iron
 - 0.47 mg/ml whole blood
 - 1.16 mg/ml 'packed' cells
- Daily loading in splenectomized patients with thalassaemia major, if mean Hb 12 g/dl =
 - Transfusion: 0.4 mg/kg/day
 - Absorption: 1-4 mg/day
 - Total: ~o.5 mg/kg/day

Goals of Iron-Chelation Therapy

- Clinical cardiac disease free survival
- Adequate reduction of hepatic iron
- Arrest of hepatic fibrosis
- Adequate growth
- Normal gonadal and endocrine function
- Normal glucose tolerance
- Extended survival

Clinical Complications of Iron Overload

- Cardiac failure, conduction abnormalities
- Hepatic dysfunction
- Infection
- Growth failure
- Abnormal sexual development
- Pancreatic dysfunction
- Thyroid, parathyroid, adrenal insufficiency
- Osteoporosis

Iron Chelating Regimens Under Evaluation

- Deferiprone
- Deferiprone with desferrioxamine ('Combination' therapy)
- Deferasirox(Exjade or Asunra)

Deferasirox (Exjade or Asunra)

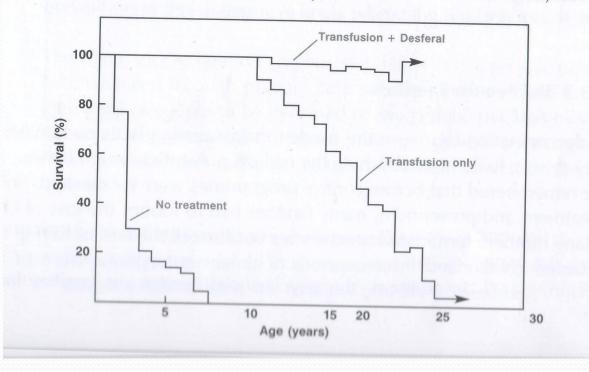
- Regimen 10-30 mg/kg 30 min before breakfast
- 100 mg tablet Rs 80/=
- 400 mg tablet Rs 200/=
- Expenditure 50% of desferrioxamine

Deferiprone Toxicity

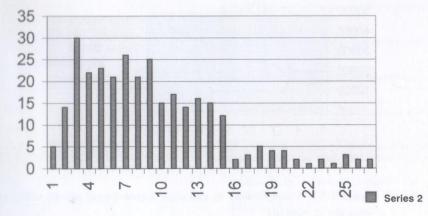
- Agranulocytosis
- Neutropaenia
- Zinc deficiency
- Nausea
- Accelerated hepatic fibrosis o-3
- Fluctuating LFTs
- Arthropathy
- Dropouts(Unexplained)

0.6-4% "5.4/100pt-years" 14% 10-20% 0-37% 44% 6-50% 20-55%

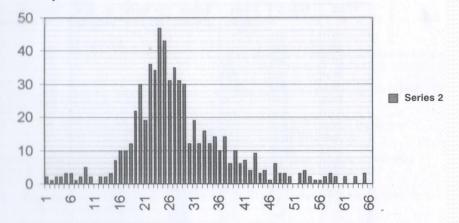
Expenditure For Chelation


Name	Year	Quantity	Value in Rs.
Desferrioxamine injection 500mg	2002 2003 2004 2005 2006 2007 2008	130,556 162,114 131,745 214,600 299,924	48,375,256.00 61,760,471.00 70,673,059.00 71,624,050.00 103,669,059.00 98,950,000.00 141,780,000.00
Deferiprone capsule 250mg	2002 2003 2004 2005 2006 2007 2008	97,400 127,500 16,600 35,400	2,301,812.00 2,855,325.00 251,088.00 433,812.00 730,000.00 860,000.00
Deferiprone capsule 500mg	2002 2003 2004 2005 2006 2007 2008	74,200 25,700 55,900 35,100 47,900	2,854,474.00 988,679.00 1,631,266.00 867,465.00 1,358,105.00 1,350,000.00 1,730,000.00

Summary of Expenditure


	Desferrioxamine	Deferiprone	Total
2002	48,375,256.00	5,156,286.00	53,531,542.00
2003	61,760,471.00	3,844,004.00	65,604,475.00
2004	70,673,059.00	1,631,266.00	72,304,325.00
2005	71,624,050.00	1,118,553.00	72,742,603.00
2006	103,669,059.00	1,791,917.00	105,460,976.00
2007	98,950,000.00	2,080,000.00	101,030,000.00
2008	141,780,000.00	2,590,000.00	144,370,000.00

Survival curve


Figure 1.2 - Survival Curve (reproduced from Modell et al, 1992)

Age distribution of thalassaemics in a country with no prevention

Age distribution in a country with full treatment and prevention

In the first graph, we see that patients are mostly infants (non-prevention) and children (early deaths).

In the second graph, we see the gap in the early years, with patients mostly in their mid-twenties.

Why is prevention important?

- Disease burden- 2000 patients with beta thalassemia major 1000 patients with HbE/Thalassemia 60 new cases per year
- Expenditure-Chelation
 - Blood transfusions Infusion pumps Hidden expenditure

Palestine

- Population 3 million
- Screening with MCV if <79 fL
- Hb electrophoresis > $3.5\% A_2 \beta$ thal carrier
- 2001 2004
 - 57,242 screened
 - 49,900 received thalassaemia free certificate
 - 3,352 (5.8%) had low MCV and 852 (1.54%) were carriers

Palestine (contd.)

- 105 cases- both partners were carriers and their marriages were cancelled voluntarily or by order of QQ (Qudi Qudah) legitimate courts
- Before screening 33-21 cases / year
- After screening 7 / year
 - 2 marriages abroad
 - 5 misdiagnosed

Iran

- Population: 70 million
- Estimate: 3 million carriers 20,000 patients
- Main stratergies
 - Screening of couples who decide to marry
 - 650,000 screened
 - 1000 accepted counsellors' recommendations
 - 210 cases prevented
 - USD 20 million saved

Thank you

STRATES STRATES

main

Where in Sri Lanka ?

- North Central Province
- North Western Province
- Uva
- Central Province
- Western Province

Monitoring System (1)

- An identity card
 - Thalassaemia patients
 - Carriers
- Notification of patients and carriers to central registry
- Cascade screening
 - Total number in cascade
 - Total number screened
 - Total number of carriers
 - Cascade extending from carriers
- Voluntary screening
 - Total number screened
 - Total number of carriers

Monitoring System (2)

- Percentage coverage of screening of eligible youths and adolescents
- Incidence of unsafe marriages
- Incidence of high risk pregnancies
- Incidence of thalassaemia (new cases)

β Thalassaemia major

Why is Prevention Important?

- High frequency of the condition
- To avoid fatalities from untreated β Thalassaemia
- The expense and difficulty of providing optimum treatment for patients, which creates a burden on patients, families and national health service.
- Prevention is good public health practice for a genetically determined disease.
- Cost effectiveness
- Relieves burden on families.

Service Indicators for Prevention

- Number of births per year
- Number of pregnancies per year
- Annual births of carriers and pregnant carriers per year
- Annual number of at risk couples and at risk pregnancies
- Annual number of prenatal diagnoses

Health Education

- Professional education
- Informing the public
 - School curriculum and other programmes
 - Mass media
- Informing policy makers
- Form patient-parent associations

Public Education Programmes

• Media

- Print
- Electronic: radio, TV
- Posters
- Leaflets
- Lectures
 - Schools
 - Places of work

General Demographic Data

- Population size
- Population characteristics
- Crude birth rate
- Infant mortality rate
- Financial factors such as GDP, GNP
- Consanguinity rate

Training Programme- workshops

- Thalassaemia Medical Officers- 5 days
- Other Medical Officers- 1 day
- Nurses 1 day
- Public Health Midwives 1 day
- Registrars of marriages, Marriage brokers- ½ day
- School teachers and students ½ day

Screening

- Basic data
- Haematology
- Hb electrophoresis
- Identification card for carriers and patients

Basic Data

- Full name
- Date of birth (DOB)
- Sample date (should not be transfused during previous 4 months)

Haematology (Coulter Counter) CBC/ FBC

Hb, RBC, MCH, MCV, RDW

- MCV < 78 fL
- MCH < 27 pg

(test within 24 hours; otherwise falsely elevated MCV)

Hb Electrophoresis

Methods?

- 1. At pH 8.6 using cellulose acetate
- 2. At pH 6.0 using acid agarose or citrate
- 3. Isoelectric focusing
- 4. HPLC High Performance Liquid Chromatography

Causes of reduced red cell indices & normal Hb electrophoresis

- Iron deficiency
- Heterozygous α- thalassaemia
- Heterozygous for mild β thalassaemia mutation
- Co- inheritance of heterozygous δ with β thalassaemia
- Heterozygous $\gamma \delta \beta$ thalassaemia

Other Screening Methods

- Osmotic fragility of RBC
- Fetal sampling

Osmotic fragility of RBC

NESTROFT

(Naked eye single tube red cell osmotic fragility test)

- Blood in EDTA
- 0.36 % buffered saline
- Text- clearly visible: Negative
- Text-not visible because of turbidity: Positive
- False positives in: Iron deficiency
- Positive in both β and α thalassaemia carriers

Laboratory Equipment Required

- Coulter Counters for CBC/ FBC (at District level)
- HPLC machines: 5
 - Ragama**
 - Kurunegala*
 - Anuradhapura*
 - Badulla*
 - Trincomalee or Batticaloa
 - Hambantota